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Abstract
In this work we consider a ballistic superconductor/multilayer–ferromagnet/
superconductor junction, with interface scattering potential, which can be
different in strength. We develop, for an arbitrary number of layers, compact
analytic formulae for the Andreev bound state spectrum and the supercurrent.
The phase dependence of the supercurrent is obtained from the Andreev
amplitudes and results in an extremely simple form for any number of
ferromagnetic layers. In the Matsubara summation it enters the denominator
as a cos φ plus a φ-independent term. The reduced formulae are amenable to
efficient numerical computation. For a few cases we also give simple equations
for the numerical determination of the bound states, obtained with algebraic
matrix multiplication and numerical results are discussed.

PACS numbers: 74.45.+c, 74.78.Fk, 73.23.Ad

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Hybrid systems containing superconducting and ferromagnetic elements are actively studied
experimentally with advances in junction preparation techniques. The effort is for well-
characterized interfaces between clean ferromagnet and superconductors to study spin-
dependent transport properties. Spin polarized tunnelling can probe the electronic spectrum
near the Fermi energy [1] as has been established with point contact spectroscopy by using
the Andreev spectroscopy of magnetic materials in contact with superconductor [2, 3]. These
hybrid systems could well find applications in magnetoelectronics [4], quantum information
etc. Here we limit ourselves to Josephson junctions where the intermediate layer is an
array of ferromagnets. In this case an interesting experimental observation is the π -junction
behaviour which was predicted long time ago for the case of paramagnetic impurities [5] and
recently observed experimentally [6–8]. The π -junction has also been proposed along with the
0-junction in a superconducting loop as a quantum bit [9]. In the case of a normal-
superconductor (NS) system [10] the flow occurs by means of the Andreev reflection [11]
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mechanism, where an electron incident from the metal side with energy in the superconducting
gap is reflected from the NS interface as a hole which has opposite charge velocity and spin,
while at the same time a pair is transmitted in the superconductor. In the case of a perfect
interface the probability of electron to hole scattering goes to unity when the energy of the
electron is in the gap [10], if one assumes also that there is no mismatch of band parameters
across the interface. If the energy of the incident electron is at the Fermi level then the hole is
exactly retroreflected, while for energy E from the Fermi level there is a momentum mismatch
�p = 2E/vf , where vf is the Fermi velocity. When the normal metal is sandwiched between
two superconductors forming an SNS junction, there are current carrying Andreev bound
states localized in the intermediate layer, via which the transmission of supercurrent is possible
[12, 13]. While this gives the dominant contribution, at higher temperatures we must also
consider the contribution from the continuum spectrum [14].

In the case of a ferromagnet in contact with an s-superconductor, the electrons and
reflected holes in the ferromagnet, due to the opposite spins, get a Zeemann splitting from
the exchange field Eex. Thus even for an incident electron at the Fermi energy we have a
momentum mismatch �p = 2Eex/vf , which can be significant since in general Eex � �.
Thus, in an SFS junction, the relative phase increases with width of the ferromagnet d as
�� ∼ 2Eexd/h̄vf for the ballistic case. This loss of coherence will affect phase sensitive
quantities like the spectrum of Andreev bound states and the supercurrent.

Several analytic approximations can be obtained using the Andreev approximation
[15, 16] for a single ferromagnetic layer if we neglect misfit between the bands in the layers,
since we can neglect normal scattering. Due to the inhomogeneity in the superconducting gap,
we have reflections at the boundary superconductor/ferromagnet with crossing channels, like
the Andreev reflection of an electron to a hole. Recently there has been strong interest in the
study of the effect of more than one layer [15, 18–20] and in particular if the polarization of the
exchange field in two layers is antiparallel. This is to see the effect on the dephasing and
the conditions under which π -junction behaviour is observed.

In this paper we extend this to the possibility of having several ferromagnetic layers
with variable exchange fields with interface scattering. Normal metal intermediate layers
are also easily included but will not be considered here. On the other hand, we exclude
the case of superconducting intermediate layers due to the extra channel of scattering due
to the Andreev reflection, at internal superconducting layer interfaces. For simplicity we
consider the problem in one dimension and derive simple equations for the determination
of the Andreev bound states and the supercurrent in ballistic junctions. The final results
are given in terms of determinant products all of which involve 2 × 2 matrices which
are given analytically. Some numerical evaluation is needed for the determination of the
Andreev spectrum and the current, but the computational time is greatly reduced from that
required from direct numerical evaluation of the determinant obtained from the matching
condition. For special cases we will also give simple expressions. The model can also
include the case where the left and right superconductors are different materials with
different gaps and critical temperature. In this case Andreev bound states can be missing
for some phase differences between the two superconductors, and for this range the current
is carried entirely by continuum states. In section 2 we present the model for the hybrid
junction, the Bogoliubov–de Gennes equations for this inhomogeneous structure and the
matching conditions at the interfaces. In section 3 we derive a simplified expression for
the determinant which will give us the Andreev spectrum, and in section 4 we derive an
expression for the supercurrent. In section 5 we present some simple cases for the Andreev
bound state equation, and in the final section we give some numerical results which we
discuss.
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2. Scattering problem

To calculate the supercurrent we first solve the Bogoliubov–de Gennes (BdG) equations to
compute the state vectors that describe the possible quasiparticle scattering states and then
construct Green’s function using the method introduced by Furusaki [17] and derive the
supercurrent formula using the relation from Green’s function.

2.1. The SLILF1I1F2 . . . In−1FnILSR model

We consider a hybrid superconducting junction consisting of two bulk superconductors which
are in contact with two thin insulating (oxide) layers and are separated by a nonsuperconducting
region of total length d, which consists of several ferromagnetic layers Fi, i = 1, . . . , n, of
thicknesses di correspondingly, with d = ∑n

i=1 di . The two superconductors can be different
with zero temperature gaps equal to �0L(�0R) for the left (right) superconductor. The
ferromagnetic layers have different (in both magnitude and direction) exchange energies equal
to Eex,i with polarization which can be parallel or antiparallel to the junction interface and with
each other, while in their interface there is misfit in general due to the different exchange field.
We assume a simple step-like spatial dependence of the order parameter, although in general
it must be computed self-consistently, because it has spatial variations near the interfaces and
in the intermediate region due to the proximity effect. The analytical expression that we use is

�(z) =



�L eiφL, z < 0
0, 0 < z < d

�R eiφR , z > d,

(1)

where φL, φR are the phases of the left (L) and right (R) superconductor respectively, and
�L,R(T ) are the bulk superconducting gaps whose temperature dependence are given by

�(T ) = �(0) tanh
(
1.74

√
Tc/T − 1

)
. (2)

In the case of different superconductors we can introduce the corresponding zero temperature
gaps and the critical temperatures.

The Ferromagnets are described within the effective exchange Stoner model by the one-
body potential Vσ (z) = −σEex and depends on the spin direction. The index σ = ±1 denotes
spin up or down. The exchange fields shift the Fermi levels of the two spin sub-bands and
also cause ordinary reflections at the SF interfaces due to the Fermi energy mismatch. In the
superconducting banks Vσ (z) = 0, i.e. we neglect the effect of the ferromagnet, which can be
the case if the insulating layer is relatively strong.

In order to model different bandwidths in the layers, the diagonal terms of the BdG
equations are written in the effective mass approximation

h0 = −h̄2∇ 1

2m(z)
∇ + V (z) (3)

with piecewise constant effective masses. The total potential consists of three terms

V (z) = W(z) + U(z) − µ, (4)

where U(z) and µ are the electrostatic and the chemical potential, respectively. We allow these
quantities to have different but constant values in the layers of the junction. The quantities
µ − Ui(z) (i = S, Fi) are the Fermi energies of the appropriate regions.

Scattering processes which are caused by the S/F and F/F ′ interface insulating layers
are modelled by the interface potential

W(z) = ŴLδ(z) +
n−1∑
i=1

Ŵiδ(z − di) + ŴRδ(z − d), (5)
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where we assume that scattering only takes place in the vicinity of the interfaces (delta-barrier
potential). Since we examine the behaviour of this junction in the ballistic limit no other
scattering processes take place in the bulk of the layers due to disorder or spin-flip processes.
The parameters that model the band structure misfit are the ratios

mrj = mFj

/
mS, frj = E

(Fj )

F

/
E

(S)
F , krj = q

(Fj )

F

/
k

(S)
F , (6)

i.e. correspondingly the ratios of the effective masses in the ferromagnet
(
mFj

)
to the one in

the superconductor (mS), the ratio of the Fermi energies in the ferromagnets
(
E

(Fj )

F

)
to the

one in the superconductor
(
E

(S)
F

)
and the Fermi wavevector in the ferromagnet

(
q

(Fj )

F

)
to k

(S)
F .

From the definitions of the Fermi wavevectors

q
(Fj )

F =
(

2mFj
E

(Fj )

F

h̄2

)1/2

, k
(S)
F =

(
2mSE

(S)
F

h̄2

)1/2

, (7)

it follows that

krj = √
frjmrj . (8)

2.2. Bogoliubov–de Gennes equations

In the absence of spin-flip processes the two spin channels are decoupled and for each set of
solutions (uσ (z), v−σ (z)) the BdG equations(

h0 + Vσ (z) �(z)

�∗(z) −h0 + Vσ (z)

)(
uσ (z)

v−σ (z)

)
= E

(
uσ (z)

v−σ (z)

)
(9)

can be solved easily.
We construct the solution of the inhomogeneous problem by solving the set of equations

for each region and subsequently applying the boundary conditions at the interfaces [21]. For
the superconducting regions the solutions are

ψ±e
L,R(z) = exp

(±ik+
L,Rz

) (uL,R e+iφL,R/2

vL,R e−iφL,R/2

)
, (10)

ψ±h
L,R(z) = exp

(∓ik−
L,Rz

) (vL,R e+iφL,R/2

uL,R e−iφL,R/2

)
. (11)

Here ±e(h) indicates the electron(hole)-like quasiparticle moving to the right(+) or left(−),
uL,R = √

(1 + �L,R/E)/2 and vL,R = √
(1 − �L,R/E)/2 are the BCS amplitudes, and

�L,R =
√

E2 − �2
L,R . The wavevectors are

k±
L,R = k

(S)
F

[
1 ± sign(E)

�L,R

E
(S)
F

]1/2

, (12)

where the sign(E) ensures us that in the limit �L,R → 0(�L,R → |E|) the solutions reduce
to the normal state solutions with E being either positive or negative.

When � = 0 the solutions in the ith ferromagnetic region have the simple plane wave
spatial dependence:

ψ±e
Fi

(z) = exp(±iqei,σ z)

(
1
0

)
, ψ±h

Fi
(z) = exp(∓iqhi,−σ z)

(
0
1

)
. (13)

Again ±e(h) indicates the electron(hole) quasiparticle moving to the right or left. The
wavevectors qei,σ and qhi,−σ obey
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qei,σ = q
(Fi)
F

[
1 +

(
E

E
(Fi)
F

+ σηi

)]1/2

(14)

qhi,−σ = q
(Fi)
F

[
1 −

(
E

E
(Fi)
F

+ σηi

)]1/2

, (15)

where we have defined the normalized exchange field ηi = Eex,i

/
E

(Fi)
F .

The scattering problem for the inhomogeneous structure has eight solutions when E > �,
which can be built up by combining the fundamental solutions in the different layers for a
homogeneous material. They correspond to the cases: electron-like quasiparticle (ELQ)
injection from the left (
1), hole-like quasiparticle (HLQ) injection from the left (
2), ELQ
injection from the right (
3) and HLQ injection from the right (
4), plus the same injection
processes with opposite spin (for the electron part) of the injected quasiparticles. For example
the first process has the explicit form


1(z) =
{

ψ+e
L (z) + a1ψ

−h
L (z) + b1ψ

−e
L (z), z < 0

c1ψ
+e
R (z − d) + d1ψ

+h
R (z − d), z > d,

(16)

where a1, b1, c1 and d1 are the Andreev amplitude, the normal reflection amplitude, the normal
transmission amplitude and the transmission amplitude with branch crossing, respectively. The
solution in the ith Ferromagnetic layer is


Fi(z) = c+
i,σψ+e

F i (z − zi−1) + c−
i,σ ψ−e

F i (z − zi−1)

+ d+
i,−σ ψ+h

F i (z − zi−1) + d−
i,−σ ψ−h

F i (z − zi−1), (17)

where zi−1 � z � zi, i = 1, 2, . . . , and c+
i,σ (c−

i,σ ) are the amplitudes of the right (left)
going electron with spin σ and d+

i,−σ (d−
i,−σ ) the amplitudes of the corresponding holes with

opposite spin in the ith layer. Note that the phase of the wave has reference point the left
interface of the ith layer (z = zi−1). The positions of the interfaces are taken at z = zi =∑i

j=1 dj , i = 1, 2, . . . , n, where the origin is z0 = 0 at the left superconductor/ferromagnet
interface. We can calculate the coefficients through the matching conditions at the interfaces
at zi :


(z)|z=zi− = 
(z)|z=zi+ , (18)

1

mr(zi−)

d
(z)

dz

∣∣∣∣∣
z=zi−

= 1

mr(zi+)

d
(z)

dz

∣∣∣∣∣
z=zi+

− 2mSŴi

h̄2 
(zi), (19)

with mr(zi−) = mri and mr(zi+) = mr,i+1. In the following we will not be concerned with the
eigenfunctions of the Andreev bound states but only with their spectrum and the contribution
to the supercurrent. In the rest of the paper we will normalize all wavevectors to kF , but we
will keep the same symbols. This means that we divide all the boundary condition equations
by kF . When the wavevectors are in exponentials we also normalize appropriately the length
as will be stated below.

2.3. Matching conditions matrix (MCM)

The matching conditions for the scattering states can be written in terms of a matrix equation
as follows: first the continuity of the wavefunction and the discontinuity of the derivative for
the electron part of the wavefunction, and then the same for the hole part at the first interface.
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This procedure is continued until the last interface. The coefficients for each scattering state
are equal to N = 4 + 4n and are arranged in the following way: first the outgoing hole-like
and electron-like quasiparticles in the left superconductor, then the coefficients for right- and
left-moving electrons, left and right moving holes in the intermediate layers, and finally the
outgoing electron-like and hole-like quasiparticles in the right superconductor.

The complete boundary condition equations are thus written in a matrix form

Bn	en = 	binc
n , (20)

where for one layer the coefficient vector is

	e1 = {
a, b, c+

1 , c−
1 , d−

1 , d+
1 , c, d

}
(21)

and for n layers

	en = {
a, b, c+

1 , c−
1 , d−

1 , d+
1 , . . . , c+

n, c
−
n , d−

n , d+
n , c, d

}
, (22)

with N = 4 + 4n elements, where for simplicity we omit the spin index σ . The constant
vector for the first process (incident electron quasiparticle from left) is(	binc

n

)
1 = {−uL,−ik+

LuL,−vL,−ik+
LvL, 0, . . . , 0, . . . , 0N

}
. (23)

In the following we consider the normalized interface scattering potential parameters:

Zj = 2mSŴj

h̄2kF

, j = 0, 1, . . . , n. (24)

Solution of this system gives the wavefunction everywhere. Of course here we are interested
only in the coefficients a1 and a2, which enter the expression of the current, and their
denominators from which the bound state spectrum is obtained. By this arrangement the
matching condition matrix (MCM) takes the block form. For one layer

B1 ≡




(L1) (E1)

(L2) (H1)

(e1) (R1)

(h1) (R2)


 , (25)

for two layers

B2 ≡




(L1) (E1)

(L2) (H1)

(e1) (E2)

(h1) (H2)

(e2) (R1)

(h2) (R2)




, (26)

and for n layers

Bn ≡




(L1) (E1)

(L2)

R4n

(R1)

(hn) (R2)




N×N

, (27)

where R4n is the 4n × 4n matrix

R4n =




(H1)

(e1) (E2)

(h1)
. . .

. . . (En)

(hn−1) (Hn)

(en)




, (28)
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and N is the dimension of the MCM matrix, which is equal to 4(n + 1).
The L(R) blocks are

(L1) =
(

vL uL

ik−
L vL −ik+

LuL

)
, (L2) =

(
uL vL

ik−
L uL −ik+

LvL

)
, (29)

and

(R1) =
( −uR −vR

−(
ik+

R − ZR

)
uR

(
ik−

R + ZR

)
vR

)
eiφ/2 (30)

(R2) =
( −vR −uR

−(
ik+

R − ZR

)
vR

(
ik−

R + ZR

)
uR

)
e−iφ/2. (31)

The normal layer blocks are

(ej ) =
(

eiχej e−iχej

iq̃ej eiχej −iq̃ej e−iχej

)
(32)

(Ej ) =
( −1 −1

−(iq̃ej − Zj−1) (iq̃ej + Zj−1)

)
(33)

(hj ) =
(

eiχhj e−iχhj

iq̃hj eiχhj −iq̃hj e−iχhj

)
(34)

(Hj ) =
( −1 −1

−(iq̃hj − Zj−1) (iq̃hj + Zj−1)

)
, (35)

where in the pre-exponentials we use the normalized wavevectors

q̃ej = qej /mrj , q̃hj = qhj/mrj . (36)

The phases that occur in the above equations are

χej = κqejdj , χhj = κqhjdj , j = 1, . . . , n, (37)

which are the evolved phases of an electron (χe) or a hole (χh) respectively, traversing the
j th ferromagnetic region forth or back (for the hole). Here q is normalized to kF , the width
of the j th layer dj is normalized to the coherence length ξ0 and the dimensionless parameter
κ = kF ξ0 = 2EF /(π�0). In all cases we must evaluate the determinant of the MCM which
enters the denominator of the coefficients and will determine the Andreev bound states. The
determinants of the normal blocks which will be used later are

det(ej ) = det(Ej ) = −2iq̃ej , det(Hj ) = det(hj ) = −2iq̃hj , (38)

while for the other matrices the determinants are given in appendix A.

3. Determinant of MCM

The localized Andreev states are determined from the vanishing of the determinant of Bn,
defined as �(E) ≡ det(Bn). In the following we will show that the full denominator can be
written as

�(E) = D[cos(φ) + γ (E)], (39)
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where Dγ (E) includes no φ-dependent term, and the only phase dependence is in the form
cos φ in the first term. First we will consider the φ-dependent term of the denominator. We
expand the determinant of the MCM by 2 × 2 subdeterminants as follows:

� = �N−1,N |MN−1,N | + �N−3,N−2|MN−3,N−2| − �N−2,N |MN−2,N |
+ �N−2,N−1|MN−2,N−1| + �N−3,N |MN−3,N | − �N−3,N−1|MN−3,N−1|, (40)

where �i,j are the 2 × 2 subdeterminants which contain the elements of the ith and j th rows
of the last two columns of Bn, i.e. elements of (R1) and (R2). |Mi,j | are the determinants of
the complement matrices to the submatrices, whose determinants are �i,j and the values of
�i,j do not depend on the number of the layers, since it involves only quantities related to
the right superconductor, and are given explicitly in appendix A. Only the terms �N−1,N and
�N−3,N−2 involve the phase difference.

The φ dependence of � is calculated combining the φ-dependent terms �N−1,N |MN−1,N |
and �N−3,N−2|MN−3,N−2|. The derivation of the relevant complement submatrix determinants
|MN−1,N | and |MN−3,N−2| is presented in appendix B and here we give the result.

The expansions of |MN−1,N | and |MN−3,N−2| for n layers are

|MN−1,N | =
(

n∏
i=1

det(ei) det(Hi)

)
det(L1) (41)

and

|MN−3,N−2| =
(

n∏
i=1

det(hi) det(Ei)

)
det(L2), (42)

where

det(L1) = −i
(
k+
L + k−

L

)
uLvL (43)

det(L2) = −i
(
k+
L + k−

L

)
uLvL. (44)

These are two of the possible determinants obtained from the first two columns of the MCM
matrix by taking any two rows at a time. They are tabulated in appendix A, and they depend
on the properties of the left superconductor. The other four are involved in the current
determination.

Thus, the φ-dependent term of the denominator is written as

�φ ≡ D cos(φ) = Q
(
k+
L + k−

L

)(
k+
R + k−

R

)
uLvLuRvR(eiφ + e−iφ), (45)

where we have defined Q as

Q ≡
(

n∏
i=1

det(ei) det(Hi)

)
=
(

n∏
i=1

det(Ei) det(hi)

)
=

n∏
i=1

(−4q̃ei q̃hi). (46)

3.1. Evaluation of γ

Above we derived a simple expression for the coefficient of the phase-dependent term D as a
simple product of wavevectors. To complete the evaluation of the denominator we also need
an expression for the phase-independent factor γ . We will derive in a similar manner a closed
formula, which can be used for arithmetical calculation and under some circumstances for
evaluation of analytical expressions for the denominator.
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For n layers we have (see appendix B.2)

Dγ =
∑

{ln+1},{kn+1}
(−1)ln+1+kn+1+1 det

(
(L1)k̄1

(L2)l̄1

)
det

(
(R1)kn+1

(R2)ln+1

)

×



n∏
j=1

(−1)lj +kj det

(
(Hj )lj
(hj )l̄j+1

)
det

(
(Ej )kj

(ej )k̄j+1

)
 , (47)

where D is defined earlier and the subscripts i of (S)i take the values i = 1, 2 and stand
for the ith row of the corresponding 2 × 2 submatrix (S). The sets of integers {ln+1}, {kn+1}
are the sets of indices {l1, . . . , ln+1} and {k1, . . . , kn+1}, respectively, and take the values 1, 2
and the complement indices l̄1 and k̄1 etc are defined as follows:

ī =
{

2, for i = 1
1, for i = 2.

(48)

This formula is useful for numerical calculations because the calculations involved reduce to
22(n+1). Also the compactness achieved makes more efficient use of algebraic calculations
and analytic simplifications by computer. To simplify this expression we assume that the
superconductors are identical and that the electron-like and hole-like wavevectors are equal to
their value at the Fermi sphere, i.e. k±

L,R = kF . Thus in normalized wavevectors

Dγ = −(2i)2n
∑

{ln+1},{kn+1}
Lk1,l1


 n∏

j=1

H(j)

lj ,lj+1
E (j)

kj ,kj+1


Rkn+1,ln+1 , (49)

where

R =
(

δ −is − δZR

is − δZR δ
(
1 + Z2

R

) ) , L =
(−δ −is

is −δ

)
,

with

δ = u2 − v2, s = u2 + v2 (50)

and

H(j) =
(

q̃hj cos(χhj ) −sin(χhj )

q̃2
hj sin(χhj ) − q̃hjZj−1 cos(χhj ) q̃hj cos(χhj ) + Zj−1 sin(χhj )

)
(51)

E (j) =
(

q̃ej cos(χej ) −sin(χej )

q̃2
ej sin(χej ) − q̃ejZj−1 cos(χej ) q̃ej cos(χej ) + Zj−1 sin(χej )

)
. (52)

The phases that occur in the above equations are defined earlier. So we get the remaining part
of the denominator, γ , in terms of a summation of products of elements of 2 × 2 matrices.

One could also use the transfer matrix approach, starting from a product of 2×2 matrices.
For numerical purposes we prefer the present form where the phase dependence appears simple.
Expression (39) for the eigenspectrum determination and (49) for the γ term, which will
also appear in (67) for the supercurrent determination, are well suited for efficient numerical
computation. The φ dependence is explicitly shown, and especially for the current the formula
will be efficient. For a single ferromagnetic layer starting from the transfer matrix, we can
explicitly show to recover the same analytic form, but after lengthy term rearrangements.
For many ferromagnetic layers the reduction is not obvious and the amount of analytical
calculations to reduce in our simple form is prohibitive, except if one uses symbolic matrix
multiplication. The large number of terms, however, makes symbolic simplification extremely
difficult, time consuming and most likely impossible.
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4. Andreev amplitudes and current

The main contribution to the supercurrent comes from the Andreev bound states and can be
written from the free energy of the system as

Ib = 2e

h̄

∑
n

dEn

dφ
f (En), (53)

where the sum is taken over all bound states En(φ) and the contribution is weighted by the
Fermi distribution function. At low temperatures it is the negative energies that contribute.
Thus from the spectrum En(φ) one has a good idea about the supercurrent. Thus the slope of
the spectrum at negative energies also gives the sign of the maximum critical current and one
can distinguish the situations of 0- or π -junction.

There is also a contribution from the continuum spectrum E > �, which can be
written as

Ic = 2e

h̄
kBT

(∫ −�

−∞
+
∫ ∞

�

)
dE ln

[
cosh

(
E

2kbT

)]
dρ

dφ
, (54)

where ρ(E, φ) is the density of quasiparticles as a function of energy which also depends on
the relative phase of the superconductors. The density of states can be determined from the
scattering matrix of the system. Here we will consider the formula obtained from Green’s
function approach given by Furusaki [17], which contains both the discrete and the continuum
contribution in terms of the Andreev amplitudes:

I = e

h̄
kBT

∑
ωn,σ

�L

�L

(
k+
L + k−

L

)( a1

k+
L

− a2

k−
L

)
, (55)

where the sum is over the Matsubara frequencies ωn = (2n + 1)πkBT /h̄ for n =
0,±1,±2, . . ., and the expression is evaluated using the analytic continuation E+i0+ → ih̄ωn.
The formula takes into account the degeneracy between left-going electron and right-going
hole and the same for the opposite directions, while there is also a summation over spins, since
the exchange field splits the energy levels.

To calculate the numerator of the Andreev coefficients a1(a2) for left incident electron-
like (hole-like) we interchange the first (second) column of the MCM by the corresponding
constant vectors 	binc

n due to the incident wave and obtain matrices A1 (A2) correspondingly.
We can expand the determinant of these matrices by the first two columns as follows:

|A| = δ′
1,2|M1,2| − δ′

1,3|M1,3| + δ′
1,4|M1,4| + δ′

2,3|M2,3| − δ′
2,4|M2,4| + δ′

3,4|M3,4|, (56)

where δ′
i,j are the 2 × 2 determinants obtained from the i and j rows of the first two columns

in the numerator matrices. They are different from δi,j (as seen by the prime), since we have
substituted the first or second column in the B matrices, and are also different for A1 and A2.
The expressions for the numerator determinants of the Andreev amplitudes for the left-incident
electron (A1) and the left-incident hole (A2) are

|A1| = 2ik+
L

{
u2

L|M1,2| + v2
L|M3,4| + uLvL(|M1,4| − |M2,3|)

}
(57)

|A2| = 2ik−
L

{
v2

L|M1,2| + u2
L|M3,4| + uLvL(|M1,4| − |M2,3|)

}
. (58)

The combination that occurs in the Josephson current takes the form

|A1|
k+
L

− |A2|
k−
L

= 2i
(
u2

L − v2
L

)
(|M1,2| − |M3,4|) (59)
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and
�L

�L

(
k+
L + k−

L

)( |A1|
k+
L

− |A2|
k−
L

)
= 4i

(
k+
L + k−

L

)
uLvL(|M1,2| − |M3,4|), (60)

while the analytic continuation of this at the Matsubara frequencies is summed in the
calculation of the current.

Again we show explicitly |M1,2| and |M3,4| for the one layer:

|M1,2| = det


 (H1)

(e1) (R1)

(h1) (R2)


 = det(H1) det

(
(e1) (R1)

(R2)

)

= det(H1) det(e1)�N−1,N (61)

and

|M3,4| = det


(E1)

(e1) (R1)

(h1) (R2)


 = det(E1) det

(
(R1)

(h1) (R2)

)

= det(E1) det(h1)�N−3,N−2, (62)

where all the subdeterminants are defined earlier and involve terms that contain the phase in a
simple way.

For the n layers we get by induction

|M1,2| = Q�N−1,N (63)

and

|M3,4| = Q�N−3,N−2, (64)

where the factor Q was defined in the evaluation of the denominator determinant, and will drop
out since it also appears as a factor in the denominator matrix which is the same as before.
The φ dependence is equally simple, so the expressions are

|A1|
k+
L

− |A2|
k−
L

= Q
(
u2

L − v2
L

){−iuRvR

(
k+
R + k−

R

)
(e−iφ − eiφ)

}
= Q

(
u2

L − v2
L

){−2uRvR

(
k+
R + k−

R

)
sin(φ)

}
, (65)

and dividing by � to obtain the Andreev amplitude, the contributing term in the Furusaki [17]
formula for the Josephson current can be written as

�L

�L

(
k+
L + k−

L

)( a1

k+
L

− a2

k−
L

)
= −2 sin(φ)

cos(φ) + γ (E(φ))
. (66)

So finally the current is given for the ballistic case by the formula

I = − e

h̄

1

β

∑
ωn,σ

sin(φ)

cos(φ) + γ (ωn)
(67)

as the sum over the Matsubara frequencies ωn and the spin, and γ (ωn) is the analytic
continuation of γ (E). In this paper we considered the calculations of the Andreev bound
state spectrum and the supercurrent. For this only the Andreev amplitudes (a1, a2) are needed.
One can also calculate with the same difficulty the normal reflection amplitudes (b1, b2).
Once this is done, one can calculate Green’s function in the left superconductor and then other
quantities such as density of states.

Expression (67) for the supercurrent is valid for arbitrary number of intermediate layers,
which cannot be superconducting, but otherwise can be either metallic or aligned ferromagnet,
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and can also easily include the case of band misfits. The analytical form of the current is very
convenient for numerical calculations. Since the quantities γ (ωn) depend only on constant
parameters and are independent of the phase difference, they can be tabulated as a vector with
as many elements as the terms in the Matsubara summation. Actually because of the spin
we need two vectors for each spin. Then they can be used for every value of the phase, in
order to find the maximum current. Here we consider I (φ), but actually it is the supercurrent
through the device that fixes the phase difference. So the question of what is the maximum
supercurrent is of practical importance. The above simplification is due to the separation out
of the determinants of the phase dependence. In fact one can avoid evaluating the current for
all values of the phase to find the maximum current. What we need is to find from (67) the
phase where

dI

dφ
= − e

h̄

1

β

∑
ωn,σ

γ (ωn) cos(φ) + 1

[cos φ + γ (ωn)]2
= 0. (68)

Since the search routine for the roots needs about ten iterations for convergence it is more
efficient than to scan over 200 points of 0 < φ < 2π . In our case we did not take this extra
advantage, but we used a scan over the phase. In the following we will obtain some simple
limits, where the analytic expressions are significantly simplified.

5. Simple cases

The phase-independent part of the denominator γ (E) can be reduced to simple analytic
expressions for cases which have not been treated previously. One such case is the
S/F/I/F/I/F/S structure with three intermediate layers, which are separated by interface
potentials of equal normalized strength Z. There is no interface barrier potential between
the superconductors and the normal region. The case of misfit in Fermi wavevector between
the superconductor and the normal layer is also included. The intermediate layers can include
normal metallic or ferromagnetic. The two superconductors are the same and also the exchange
fields in the normal layers, which however can have different widths. This structure can
be studied for the influence of the scattering barriers (positions and common strength) on
the interplay between the Andreev bound states and the resonances of the double barrier
potential. The phase-independent term in (39) is reduced to

Dγ

(2i)6
= u4 e−i(χe1−χh1+χe3−χh3)

{[
(Z − i)2 − q2

e

]
sin(χe2) + 2qe(Z − i) cos(χe2)

}
× {[

(Z + i)2 − q2
h

]
sin(χh2) + 2qh(Z + i) cos(χh2)

}
+ v4 ei(χe1−χh1) ei(χe3−χh3)

× {[
(Z + i)2 − q2

e

]
sin(χe2) + 2qe(Z + i) cos(χe2)

}
× {[

(Z − i)2 − q2
h

]
sin(χh2) + 2qh(Z − i) cos(χh2)

}
−u2v2 cos[((χe1 − χh1) − (χe3 − χh3))]

× {[
(1 + Z2) − q2

e

]
sin(χe2) + 2qeZ cos(χe2)

}
× {[

(1 + Z2) − q2
h

]
sin(χh2) + 2qhZ cos(χh2)

}
. (69)

Since we are interested for states within the superconducting gap, we can use

u

v

}
= 1√

2
e(±iϕE/2), with ϕE = cos−1 E

�
(70)

so that u and v are complex conjugate and the expression for γ is real as expected. The above
expression was obtained by algebraic computer simplification using the result of (49).
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A special case of the previous structure is when the exchange field is weak so that in all
pre-exponential terms we have qe = qh = 1 for the case of no misfit between superconductor
and normal layer. The exact wavevectors are kept, however, in the exponential terms. If we also
impose vanishing interface potential (Z = 0) we get from the vanishing of the denominator
for the bound state energies the well-known result

cos(Se − Sh − 2φε) − cos(φ) = 0, (71)

which can be re-expressed as a condition of the total phase shift (Se −Sh) as the electron–hole
pair traverses the normal region of width d, i.e. is the phase shift of the electron traversing the
total distance d, and the reflected hole traversing backwards the distance d. The term 2ϕE is
the phase shift at the electron to hole (and hole to electron) reflection due to the fact that the
wavefunctions decay exponentially in the superconducting layers. The last equation shows that
at Se − Sh = π , we have a π -junction spectrum for different layers with weak inhomogeneity
and no interface potential. It is the interface potential which adds more interference paths.

6. Numerical results and discussion

The analytical results obtained for the eigenvalue determinant and the supercurrent are exact
within the approximations explicitly stated. The saving in computational time is significant,
since the direct numerical evaluation of the eigenvalue determinant is lengthy due to the search
in energy and similarly for the Andreev amplitudes, which involve several matrices, due to the
many terms required at low temperatures in the Matsubara summation.

In the following we will limit ourselves to a few numerical results by varying only a few
of the parameters in the structure. Thus we will keep the intermediate layer widths fixed and
equal to 0.05 which is about 30A, for which a ballistic approach could be justified. The case
of band parameter misfit can also be treated but will not be discussed here. There is no barrier
at the interfaces with the superconducting layers, while the interfacial barriers between all
FIF ′ interfaces are taken equal to ZNN = 0 or 0.5 corresponding to no or weak barriers.
There is still, however, the Andreev reflection and some normal reflection due to misfit from
the exchange field. The exchange fields are interchanged between h1 and h2 for consecutive
layers with h1 = 0.15 fixed and variation of the exchange field in the even layers, h2. For the
parameters chosen, the exchange field has opposite direction in the even layers.

We present the critical supercurrent for different number of ferromagnetic layers as a
function of the phase shift due to the propagation of the electron across the ferromagnetic
layers and the reflected hole backwards, Se −Sh . We use this parameter instead of h2, because
it seems to be a useful parameter to characterize the possibility of π -junction [15, 16]. This
phase shift is defined as

Se − Sh =
n∑

i=1

[χei + χhi] =
n∑

i=1

κ[qeidi + qhidi], (72)

and the only variable quantity on the rhs is h2. We should remark that the calculation of the
maximum current requires first the calculation for every set of material parameters of I (φ) for
all phases and then determine the maximum current. This procedure has to be repeated for
every change in geometry or material parameters. Thus the saving in computational time in
every following plot is significant.

In figure 1, we give the maximum supercurrent for the case of three layers (n = 3)

and two values of the interfacial barrier parameter taken to be the same between all F/F ′

interfaces and equal to ZNN = 0, 0.5, while there is no barrier between the superconducting
layers and their neighbouring ferromagnetic layers. We see that for no interface barrier the
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Figure 1. Plot of the maximum supercurrent Imax versus the phase shift Se − Sh in (72), for
n = 3 ferromagnetic layers and two values of ZNN = 0 and 0.5. d1 = d2 = d3 = 0.05. The
corresponding exchange fields are h1 = h3 = 0.15. h2 is determined from Se − Sh. T = 0.1Tc

and ZSN = 0.
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Figure 2. Plots of I (φ) and E(φ) for n = 3 layers from figure 1(b) corresponding to the three
numbered lines.

maximum current shows the characteristic behaviour of a single layer [16], with the region
of π -junction behaviour around the Se − Sh = π point, while at the two dips we have the
transition between 0- and π -junctions. The pattern is almost independent of other geometries
examined (which in this case is symmetric), implying that the total electron–hole phase shift
across the ferromagnetic layers (Se −Sh) is the important phase shift in this case. For the case
ZNN = 0.5, we see that the pattern develops more asymmetry, which is more important for
different width layers. Still, however, we can distinguish the three peaks with 0, π, 0 behaviour
correspondingly. This implies that while Se − Sh is still a determining factor, the phase shifts
within each layer are also contributing factors, which can introduce new substructure.

For the range shown in figure 1, h2 varies between −0.297 and −0.1022 in the opposite
direction to h1. To verify the 0 − π transition, we check the supercurrent versus phase
difference I (φ) and the Andreev spectrum E(φ) curves for three points (numbered) in figure 1,
which correspond to approximately Se − Sh = 0 and π and the left dip. This is shown in
figure 2. We see that the I (φ) curves for the two points present the characteristic signature
for 0 (curve 1), π (curve 3) and in curve 2 the transition point where the second harmonic
in the supercurrent is evident. The Andreev bound spectrum shows an almost coincidence of
spin-up and spin-down states for Se − Sh = 0 and π , while the degeneracy is broken at the
transition point. Of course, there is still the degeneracy between electrons and holes of the
same spin but moving in opposite directions and the symmetry E(↓) = −E(↑).



Andreev spectrum and supercurrent in a multilayer ferromagnetic clean Josephson junction 9875

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0 0.5 1 1.5 2
0

0.5

1

0 0.5 1 1.5 2
0

0.5

1

I m
ax

2 - Layer 3 - Layer

4 - Layer 5 - Layer

6 - Layer 7 - Layer

(S  - S  )/π (S  - S )/πe h e h

Figure 3. Plot of the maximum supercurrent Imax versus the phase shift Se − Sh in (72), for
n = 2–7 ferromagnetic layers of equal width d = 0.05 and ZNN = 0.5. The corresponding
exchange fields are h1 = 0.15 for odd layers. h2 is determined from Se − Sh. T = 0.1Tc and
ZSN = 0.

Finally in figure 3 we plot the maximum supercurrent versus Se − Sh for n = 2–7 layers
with the same parameters as in figure 1, with ZNN = 0.5. Of course, in this case except the
misfit, we also have the interface scattering which seems to be more important with increasing
number of layers and asymmetry, and should create not only a change in the phase shift for
the path described but also extra reflections that can influence coherence. We still see however
that the phase shift parameter is still a good indicator of the π -junction behaviour. There is
always a significant region of π -junction. While the region persists there is some assymetry
which increases with interface scattering. We also see that the asymmetry is tilted oppositely
for odd or even number of layers.

In this work we have not included at all disorder in the S and F layers. The treatment
of disorder requires a diffusive approach, with the introduction of a characteristic scattering
time in the linearized Usadel equations for the quasiclassical Green’s function [22, 23]. In our
approach, however, we can include easily important factors such as strong band misfits and
spatial variation of the exchange field. We should remark that disorder will lead to a strong
decay with the junction width, but similar effects can be due to misfit in three-dimensional
junctions. We also hope that with the improvement of junction preparation techniques we will
approach the region of quasiclean junctions.

7. Summary

In summary we considered a multilayer ferromagnetic clean Josephson junction with interfacial
barriers. We developed analytical expressions in the form of products and summations
of elements of 2 × 2 matrices for the determinant that gives the Andreev spectrum. The
supercurrent is given in the summation over the Matsubara frequencies and in each term the
φ dependence is isolated. This leads to an efficient algorithm for numerical calculations,
especially when one is interested for the critical current.

The numerical results have concentrated in an intermediate region of several layers and
consecutively opposite exchange fields. The goal was to check whether for a reasonable range
of parameters the phase shift Se − Sh is a useful quantity to characterize the junction as 0 or π

for a range of reasonable widths and exchange fields. From the results of Imax versus (Se −Sh)

and the spectrum, we see that Se − Sh can give us an indication of π -junction behaviour.
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Appendix A. The S-block determinants

For the right (R) superconductor the determinants of the submatrices �i,j are

�N−3,N−2 = det

(
(R1)1

(R1)2

)
= −iuRvR

(
k+
R + k−

R

)
eiφ

�N−3,N−1 = det

(
(R1)1

(R2)1

)
= (

u2
R − v2

R

)

�N−3,N = det

(
(R1)1

(R2)2

)
= (−i

(
k−
R u2

R + k+
Rv2

R

) − ZR

(
u2

R − v2
R

))
(A.1)

�N−2,N−1 = det

(
(R1)2

(R2)1

)
= (

i
(
k−
R v2

R + k+
Ru2

R

) − ZR

(
u2

R − v2
R

))

�N−2,N = det

(
(R1)2

(R2)2

)
= (

u2
R − v2

R)
(
k+
Rk−

R + Z2
R − i

(
k+
R − k−

R

)
ZR

)

�N−1,N = det

(
(R2)1

(R2)2

)
= −iuRvR

(
k+
R + k−

R

)
e−iφ

and

�N−3,N−2 = det(R1), �N−1,N = det(R2)

�N−3,N−1 = R11, �N−2,N = R22

�N−3,N = R12, �N−2,N−1 = R21.

(A.2)

For the left (L) superconductor, we give all the possible determinants obtained from the
first two columns of the MCM matrix by taking any two rows i and j at a time and denoted as
δi,j with i < j . They are used in the evaluation of the determinant. Two of them δ1,2 = det(L1)

and δ3,4 = det(L2) enter the φ-dependent term in the denominator determinant and the other
four, which enter the φ-independent term, are defined as elements of the 2 × 2 matrix L.

δ1,2 = det

(
(L1)1

(L1)2

)
= −iuLvL

(
k+
L + k−

L

) ≡ det L1

δ1,3 = det

(
(L1)1

(L2)1

)
= −(

u2
L − v2

L

) −→ L22

δ1,4 = det

(
(L1)1

(L2)2

)
= −i

(
k−
L u2

L + k+
Lv2

L

) −→ −L21

δ2,3 = det

(
(L1)2

(L2)1

)
= i

(
k−
L v2

L + k+
Lu2

L

) −→ −L12

δ2,4 = det

(
(L1)2

(L2)2

)
= −k+

Lk−
L

(
u2

L − v2
L

) −→ L11

δ3,4 = det

(
(L2)1

(L2)2

)
= −iuLvL

(
k+
L + k−

L

) ≡ det L2.

(A.3)
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For the normal (N) blocks we have the determinants

det

(
(Ej )1

(ej )1

)
= 2i sin(χej ) = −2iE (j)

12

det

(
(Ej )1

(ej )2

)
= 2iqej cos(χej ) = 2iE (j)

11

det

(
(Ej )2

(ej )1

)
= −2i(qej cos(χej ) + Zj−1 sin(χej )) = −2iE (j)

22

det

(
(Ej )2

(ej )2

)
= 2i

(
q2

ej sin(χej ) − Zj−1 cos(χej )
) = 2iE (j)

21 ,

(A.4)

which correspond to the electron part and are related to the elements of a matrix

(Ej )(ej )
−1 = 2i

det(ej )
(E (j)). (A.5)

The corresponding matrices for the holes are

det

(
(Hj )1

(hj )1

)
= 2i sin(χhj ) = −2iH(j)

12

det

(
(Hj )1

(hj )2

)
= 2iqhj cos(χhj ) = 2iH(j)

11

det

(
(Hj )2

(hj )1

)
= −2i(qhj cos(χhj ) + Zj−1 sin(χhj )) = −2iH(j)

22

det

(
(Hj )2

(hj )2

)
= 2i

(
q2

hj sin(χhj ) − Zj−1 cos(χhj )
) = 2iH(j)

21 ,

(A.6)

which are related to the elements of the matrix

(Hj )(hj )
−1 = 2i

det(hj )
(H(j)). (A.7)

Appendix B. The evaluation of the |MN−1,N | and |MN−3,N−2| determinants

As an example we calculate explicitly |MN−1,N | for the one-layer and two-layer cases and
|MN−3,N−2| for the one-layer case. So for one layer we have

|MN−1,N | → |M7,8| = det


(L1) (E1)

(L2) (H1)

(e1)




= det(e1) det

(
(L1)

(L2) (H1)

)
= det(e1) det(H1)δ1,2, (B.1)

where δ1,2 is defined in appendix A and is the determinant of L1. In a similar manner we
calculate |MN−3,N−2|. For one layer we have

|MN−3,N−2| → |M5,6| = det


(L1) (E1)

(L2) (H1)

(h1)




= det(h1) det

(
(L1) (E1)

(L2)

)
= det(h1) det(E1)δ3,4. (B.2)



9878 V Paltoglou et al

The determinants that occur in the above expressions are δi,j , which contain the elements of
the ith and j th rows of the first two columns. They are

δ1,2 = −i
(
k+
L + k−

L

)
uLvL ≡ det(L1) (B.3)

δ3,4 = −i
(
k+
L + k−

L

)
uLvL ≡ det(L2). (B.4)

For the two-layer case we have N = 12

|MN−1,N | → |M11,12| = det




(L1) (E1)

(L2) (H1)

(e1) (E2)

(h1) (H2)

(e2)




= det(e2) det




(L1) (E1)

(L2) (H1)

(e1)

(h1) (H2)




= det(e2) det(H2) det


(L1) (E1)

(L2) (H1)

(e1)




= det(e2) det(H2) det(e1) det

(
(L1)

(L2) (H1)

)
= det(e2) det(H2) det(e1) det(H1)δ1,2. (B.5)

The expansions of |MN−1,N | and |MN−3,N−2| for n layers are obtained by induction and are

|MN−1,N | =
(

n∏
i=1

det(ei) det(Hi)

)
δ1,2 (B.6)

and

|MN−3,N−2| =
(

n∏
i=1

det(hi) det(Ei)

)
δ3,4. (B.7)

Appendix C. Evaluation of γ

First we calculate γ for the one-layer case. Therefore we rewrite the matrix B1 in a slightly
different way, by displaying the two rows for each 2 × 2 submatrix, i.e.

B1 ≡




(L1)1 (E1)1

(L1)2 (E1)2

(L2)1 (H1)1

(L2)2 (H1)2

(e1)1 (R1)1

(e1)2 (R1)2

(h1)1 (R2)1

(h1)2 (R2)2




, (C.1)

where the subscripts i = 1, 2 of (S)i stand for the ith row of the corresponding 2×2 submatrix
(S). We will calculate the determinants of the complement matrices in (C.1) that enter
equation (40) for N = 8.
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First we calculate |MN−2,N | → |M6,8|,

|M6,8| = det




(L1)1 (E1)1

(L1)2 (E1)2

(L2)1 (H1)1

(L2)2 (H1)2

(e1)1

(h1)1




= det

(
(H1)1

(h1)1

)
det




(L1)1 (E1)1

(L1)2 (E1)2

(L2)2

(e1)1


 − det

(
(H1)2

(h1)1

)
det




(L1)1 (E1)1

(L1)2 (E1)2

(L2)1

(e1)1




= det

(
(H1)1

(h1)1

){
det

(
(E1)1

(e1)1

)
det

(
(L1)2

(L2)2

)
− det

(
(E1)2

(e1)1

)
det

(
(L1)1

(L2)2

)}

− det

(
(H1)2

(h1)1

){
det

(
(E1)1

(e1)1

)
det

(
(L1)2

(L2)1

)
− det

(
(E1)2

(e1)1

)
det

(
(L1)1

(L2)1

)}

=
∑
l1,k1

(−1)l1+k1 det

(
(H1)l1
(h1)1

)
det

(
(E1)k1

(e1)1

)
det

(
(L1)k̄1

(L2)l̄1

)
, (C.2)

where the indices l1, k1 = 1, 2 and the complement indices l̄1 and k̄1 are defined as follows:

ī =
{

2, for i = 1
1, for i = 2.

(C.3)

In a similar manner we calculate the other subdeterminants. We have

|M5,8| =
∑
l1,k1

(−1)l1+k1 det

(
(H1)l1
(h1)1

)
det

(
(E1)k1

(e1)2

)
det

(
(L1)k̄1

(L2)l̄1

)
, (C.4)

|M6,7| =
∑
l1,k1

(−1)l1+k1 det

(
(H1)l1
(h1)2

)
det

(
(E1)k1

(e1)1

)
det

(
(L1)k̄1

(L2)l̄1

)
, (C.5)

|M5,7| =
∑
l1,k1

(−1)l1+k1 det

(
(H1)l1
(h1)2

)
det

(
(E1)k1

(e1)2

)
det

(
(L1)k̄1

(L2)l̄1

)
. (C.6)

To write the γ term in a compact form, we rewrite the � subdeterminants in terms of the lines
of (R1) and (R2) matrices given in appendix A.1. So from the determinant of (B1) we obtain
for a single layer our final form after reordering the determinant product

Dγ =
∑

l1,l2,k1,k2

(−1)l2+k2+1 det

(
(L1)k̄1

(L2)l̄1

)
det

(
(R1)k2

(R2)l2

)

×
{
(−1)l1+k1 det

(
(H1)l1
(h1)l̄2

)
det

(
(E1)k1

(e1)k̄2

)}
. (C.7)



9880 V Paltoglou et al

For n layers we have by induction

Dγ =
∑

{ln+1},{kn+1}
(−1)ln+1+kn+1+1 det

(
(L1)k̄1

(L2)l̄1

)
det

(
(R1)kn+1

(R2)ln+1

)
(C.8)

×



n∏
j=1

(−1)lj +kj det

(
(Hj )lj
(hj )l̄j+1

)
det

(
(Ej )kj

(ej )k̄j+1

)
 , (C.9)

where {ln+1}, {kn+1} are the sets of indices {l1, . . . , ln+1} and {k1, . . . , kn+1}, respectively. We
simplify this expression by using short symbols for the determinants as elements of matrices
to be given in appendix A.2 and the main text, to obtain

Dγ = −(2i)2n
∑

{ln+1},{kn+1}
Lk1,l1


 n∏

j=1

H(j)

lj ,lj+1
E (j)

kj ,kj+1


Rkn+1,ln+1 . (C.10)
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